[敏感词]代半导体取代了笨重的电子管,带来了以集成电路为核心的微电子工业的发展和整个 IT 产业的飞跃,广泛应用于信息处理和自动控制等领域。
尽管硅拥有很多优越的电子特性,但这些特性已经快被用到极限,科学家一直在寻找能替代硅的半导体材料,以制造未来的电子设备,随后化合物半导体横空出世。
近年来,随着功率半导体器件、工业半导体、汽车电力电子等领域的空前发展,第三代半导体材料越发凸显其重要性与优越性。目前发达[敏感词]都将第三代半导体材料及相关器件等的发展列为半导体重要新兴技术领域。
化合物半导体材料优势显著随着半导体器件应用领域的不断扩大,特别是特殊场合要求半导体能够在高温、强辐射、大功率等环境下性能依然保持稳定,[敏感词]代和第二代半导体材料便无能为力,于是第三代半导体材料。
第三代半导体主要包括氮化镓(GaN)、碳化硅(SiC)、氧化锌(ZnO)、金刚石、氮化铝(AlN)。
与[敏感词]代、第二代半导体材料相比,第三代半导体材料具有高热导率、高击穿场强、高饱和电子漂移速率等优点,可以满足现代电子技术对高温、高功率、高压、高频以及抗辐射等恶劣条件的新要求,从其材料优越性来看,颇具发展潜力,相信随着研究的不断深入,其应用前景将十分广阔。
SOI 的一个特殊子集是蓝宝石上硅工艺,在该行业中通常称为 Ultra CMOS。目前,Ultra CMOS 是在标准 6 英寸工艺设备上生产的,8 英寸生产线亦已试制成功。示范成品率可与其它 CMOS 工艺相媲美。
GaAs 生产方式和传统的硅晶圆生产方式存在较大差异,采用磊晶技术制造,磊晶圆直径只有 4-6 英寸,而传统硅晶圆直径为 12 英寸,对技术和操作精度有较大提升;此外,磊晶圆生产需专门设备,这就使砷化镓技术成本高于传统硅基技术。磊晶目前有两种,一种是化学的 MOCVD,一种是物理的 MBE。
GaN 则是在 GaAs 基础上的再升级,性能更优越,适用于微电子领域和光电子领域。在微电子领域主要为无线通讯、光通讯、无线局域 网、汽车电子产品、军事电子产品等方面;光电子领域为射频 IC,具体体现为 PA、LNA 等通信元件。
有望全面取代传统半导体
从应用领域来看,[敏感词]代半导体硅(Si),主要应用在数据运算领域,第二代半导体砷化镓(GaAs),主要应用在通信领域,两者都有一定的局限性。
第三代宽禁带半导体碳化硅(SiC)和氮化镓(GaN),以其高温下的稳定性、高效的光电转化能力、更低的能量损耗等[敏感词]优势,可以被广泛应用在各个领域,无论是消费电子设备、照明、新能源汽车、风力发电机、飞机发动机,还是导弹和卫星,都对这种高性能的半导体有着极大的期待,未来有望全面取代传统半导体材料。
第三代半导体材料已展现出极其重要的战略性应用价值,有望突破[敏感词]、二代半导体材料应用技术的发展瓶颈,创新开拓时代需求的新技术领域,不仅在信息领域,而且进入到能源领域发挥极为重要的作用。